

Field Artillery Captain's Career Course

MLRS DELIVERY OF FIRES

The Mission of the Field Artillery is to...

the enemy by cannon, ROCKET and MISSILE fire and to help integrate all fire support assets into combined arms operations.

Learning Activities

- Identify the MLRS Targeting Process
- Identify the Levels of Intensity
- Identify requirements in determining Launcher Location
- Identify Tactical Response Posture methods
- Demonstrate knowledge in Meteorological Requirements
- Identify requirements in Fire Mission Processing
- Determine MLRS Safety Procedures

Targeting Process

D3A Targeting Methodology

DECIDE

ASSESS

DETECT

DELIVER

Decide

- Overall focus/sets intell collection priorities.
- What delivery system to use.
 - Avail of other wpns sys (manned aircraft)
 - Range to target (munitions availability)
- Which targets to attack (TSS,HPTL,AGM).

Detect

- What to look for (PIR)
- Where to look (NAI)
- What to look with (TA)
- Where to attack (TAI)

Deliver

- Which weapon system
- Determine desired effects.

Destroy! Neutralize! Suppress!

> FM 6-20-10 ST 6-60-30

Assess

Final verification of target.

FM 6-20-10 ST 6-60-30

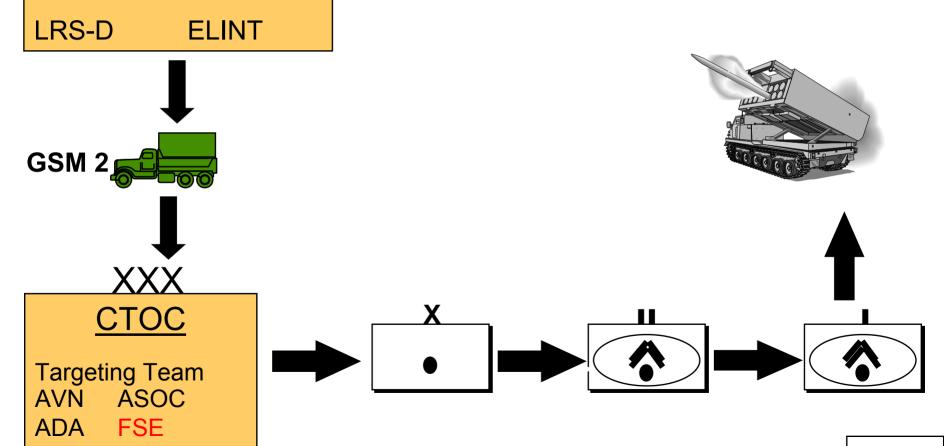
Control of Munitions

(M39)

- Centralized Decentralized

Control of Munitions

Centralized

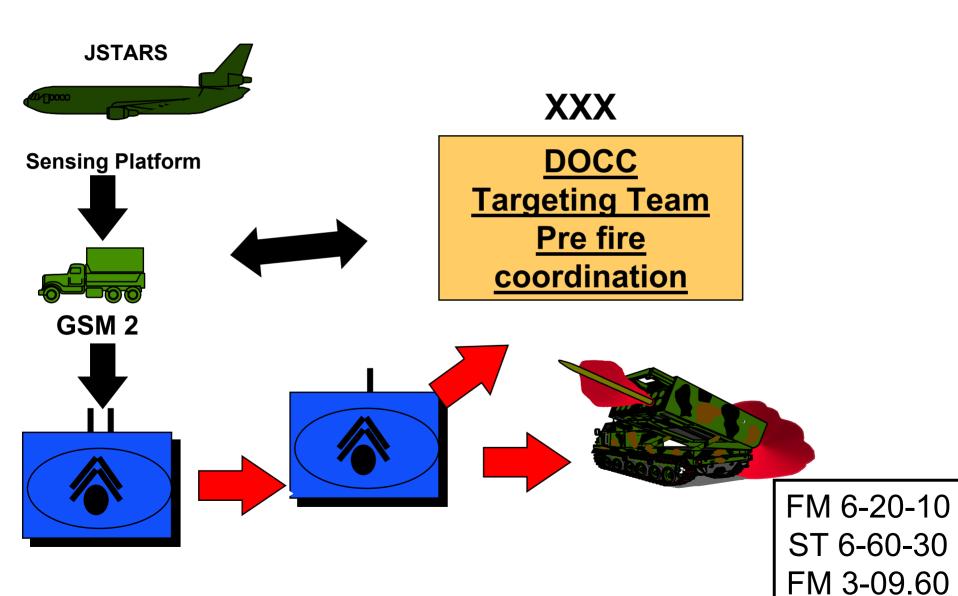

- M39 Army Tactical Missiles (ATACMS)
- Normally fired at stationary targets beyond Division's AO
- Generally fired by corps MLRS BNs
- Controlled by the Corps Artillery

Centralized Execution

Suite of Sensors

JSTARS UAV

Radar SOF



Control of Munitions

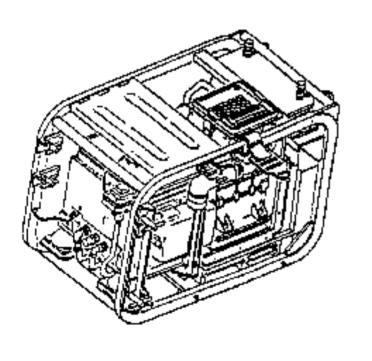
De-Centralized

- CGS attaches to MLRS BN
- Time-sensitive HPTs
- TTP uses amended AMC Fire Mission
- Rehearse, rehearse, rehearse

Decentralized Execution

Launcher Location

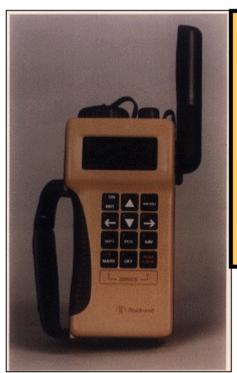
Launcher Location


- PDS UpdateSRP AlignmentCalibration

PDS Update

- Maintain Accuracy
- Normally done after 6 to 8 km of travel.
- PDS output compared to known survey control point (SCP)
- Calibration constants are not changed

PDS Update


Position and Determining System (PADS)

- One PADS per battery
- Determines location and altitude
- Primary means for determining position control
- Survey section controlled through the BOC

PDS Update

Precision Lightweight GPS Receiver (PLGR)

- One PLGR per launcher section
- Secondary means for establishing position control
- Only useful for position control when SPLL is updated at the FP

SRP Alignment

- Orientation of gyro-compass determines
 - Heading
 - Elevation
 - Slope
- Initial uncompensated alignment takes 8 minutes
- Additional stabilization results in a compensated SRP (about 2.5 minutes)

SRP Realignment

- Countdown clock alerts crew when to realign the SRP
- Realignment takes 3.5 minutes Launcher stationary; LLM stowed
 - Compensated Realignment

Time Between SRP Realignments

M26 Rocket

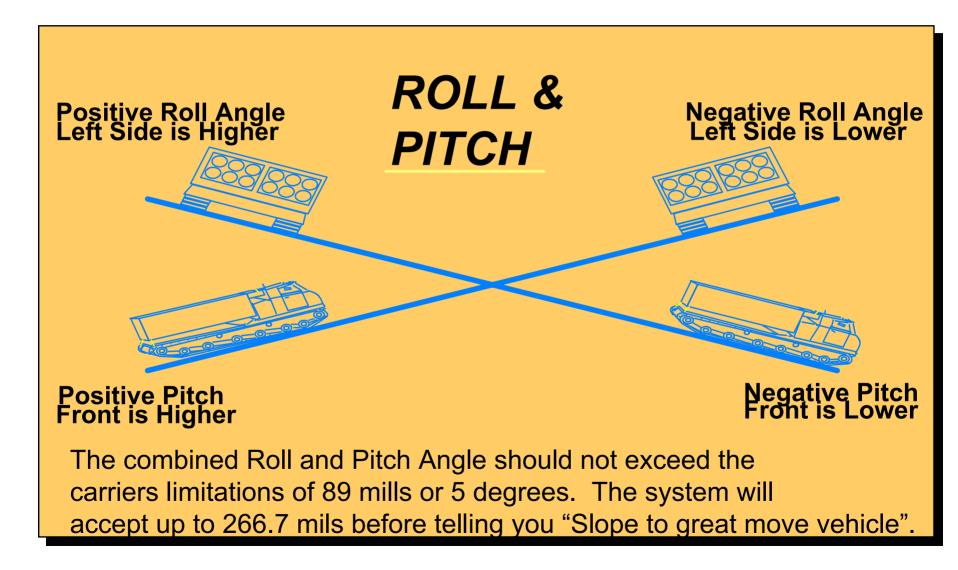
UNCOMPENSATED

15:00

COMPENSATED

60:00

M39 Missile


UNCOMPENSATED

11:00

COMPENSATED

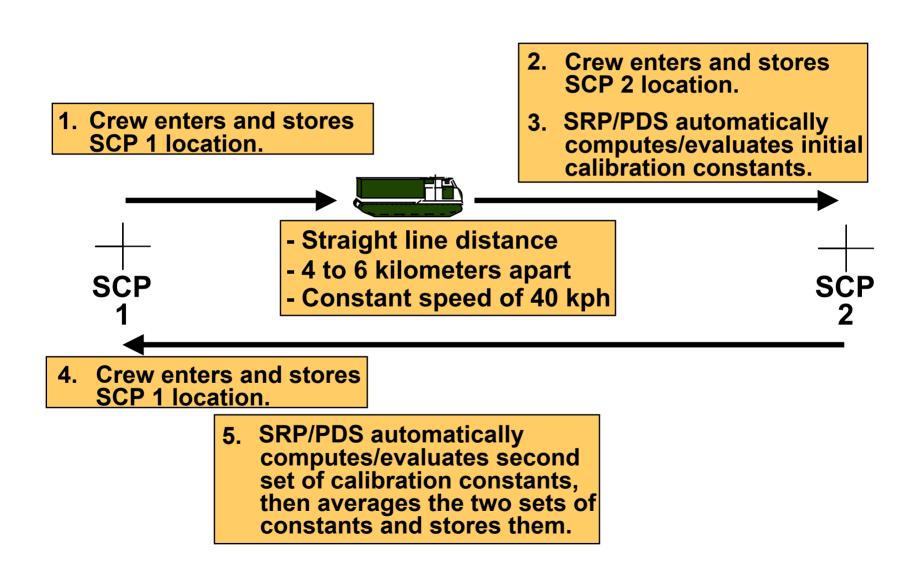
28:00

SPLL Slope

PDS Calibration

- PDS calibration compares the PDS output against two known SCP locations and computes calibration constants
- The constants are then used as the odometer scale factor, azimuth crab angle, and elevation crab angle calibration parameters until the next calibration

PDS Calibration


- Corrects for errors caused by:
 - Differences in track tension
 - By wear of sprockets and track components
- How often?
 - Every 30 Days
 - After SRP/PDS Replacement
 - After major suspension or track drive system maintenance
 - When operating conditions change

PDS Calibration

Required:

- Two SCPs 4-6 KM apart in a straight line distance.
- You should drive the launcher between the two points at a constant speed of 40KPH

Calibration

Tactical Response Posture

Weapon Information

- Indicates launchers' readiness to respond to fire missions
 - Directed by Commander
 - Posturing HOT, COOL, or COLD

* See Table 6-1 (P 6-7) for MFOM and AFOM J-codes

Hot Status

- Launcher is fully capable of firing a mission
- Response time 2-6 min depending on:
 - Travel time to Firing Point
 - Launcher lay time (93 Sec for M270)

Cool Status

- Launcher can fire after SRP alignment
- Response time 12-20 min
- Used for temporary break in firing
 - Minor PMCS
 - Class I
 - Refueling

Cold Status

- Launcher is Non-mission capable for:
 - Maintenance
 - PMCS
 - Crew rest
- Response time is a minimum of 30 min

Meteorological Requirements

Accurate MET

- Launcher FCS uses all lines to compute firing data
- MET message received from Force FA HQs to Bn to Btry to the Launcher
- FDS can interface directly with MDS (heavy divisions) or MMS (light divisions)

Criteria

- Current MET from station within 20 km of Firing Points
- Current MET from nearest station outside of 20 km from Firing Points
- MET over 2 hours, but from station within 20 km of the Firing Points
- Note: 4 hour MET can be used except during transitions

Message Heading

- Verify if date and time are current
- Note: GMT is used
- Check met station height
- Identification line and line 00 pressure should be the same

Indicates a Computer MET

The station altitude in tens of meters

Atmospheri c Pressure in Millibars

COMPUTER MET MESSAGE

For use of this form, see FM 6-15; the proponent agency is TRADOC

IDENTIFI-TIME DURATION STATION OCTANT LOCATION DATE MDP CATION (GMT) (HOURS) HEIGHT PRESSURE MB L L L L L L (10's M)or **METCM** orQ $P_d P_d P_d$ YY G_o G_o G XXX XXX H hhh 984 25 036 **METCM** 347 138 974

Global Position where the MET was taken Position of MET
Station in LAT and
LONG to the
nearest 10th of a
degree

Day of the Month/Greenwich

A one digit code representing the duration the MET is valid for

Greenwich Mean Time: The 1st two digits represent the hour, and the 3rd digit represents the minutes in tenths

Message Body

Question MET when lines change:

- Greater than 1000 mils in wind direction
- Greater than 10-15 knots in wind speed
- Greater than 20 Kelvin in temperature and:
- Atmospheric Pressure does not decrease consistently

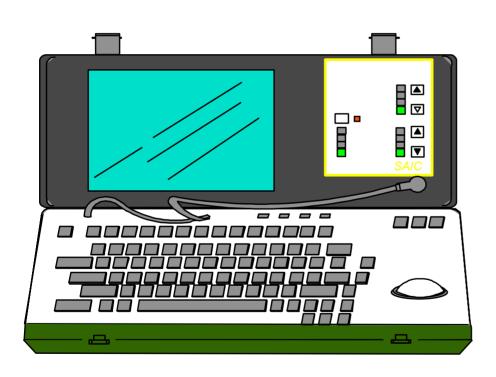
Fire Mission Processing

Computational Procedures

- Tactical fire direction computed via the FDS
- Technical fire direction computed via the FCS on the launcher
 - Computes firing data for all fire missions
 - The EU munitions programs are input from a cassette through a PLU

Battalion FDC

- Tactically controls fires of the battalion
- NCS for the Fire Direction Net(s)
- Primary link with Force FA HQ
- Receives fire plans from Force FA HQ
- Checks for FSCM violations
- Selects platoon to execute fire mission
- Transmits targets to battery FDCs


Battery FDC

- Concerned solely with delivery of fires
- Executes fireplans
- Checks for FSCM violations
- Transmits fire mission to launcher
- Maintains status of launchers

Platoon FDC

- Monitors all traffic between BOC and launchers
- Relays messages and orders
- Maintains ammunition and launcher status
- Be prepared to assume Jump BOC

Fire Direction System (FDS)

(AN/GYK-37)

FDS Capabilities

- Stores and executes up to 6 fire plans
- Same program hard drive at:
 - Battalion
 - Battery
 - Platoon
- Selects number of aim points
- Selects number of rockets

Target Processing

Target Type

- Volleys Type Targets
- Effects Type Targets

Volleys Type Target

- All rockets aimed at target center
- If no entry, default value is six rockets

Effects Type Targets

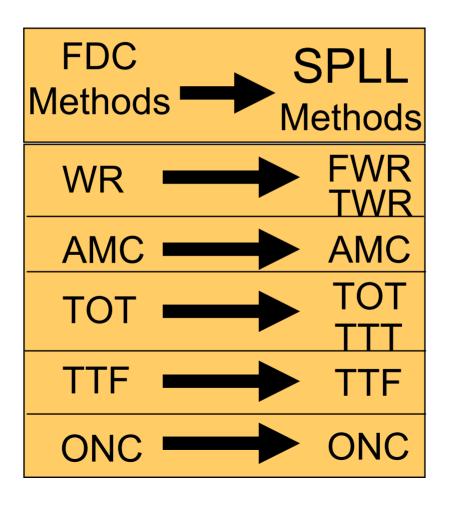
- FDS selects number of rockets to fire at a specific number of aim points (maximum of 6 per target)
- Aim point determining criteria:
 - Desired effects
 - Target size
 - Range to target

Effects Cut-off Factor (ECOF)

- Specifies the minimum percentage of effects that the commander considers acceptable on a fire mission:
 - FDS begins with one round
 - It then adds one round at a time comparing the effects each time
 - When an additional round does not increase the effects by ECOF, effects processing is terminated

Launcher Response

- Launcher receives fire mission
- Launcher FCS verifies
- Mission can be fired after consistency check
- Launcher has correct type and amount of munitions
- Target is within range
- Sends "WILCO" message to battery


Movement to Firing Point

- Launcher moves to Firing Point
- Verifies no immediate masks present
- Orients on parking heading within 100 mils
- Position SPLL within 150m of FP
- Lays launcher, arms munitions, FIRES!
- Stows LLM
- Moves to next location

Multiple FM Sequence Resource Limitations

- Number of targets excessive
- Limited launcher availability
- Crew can fire up to three missions
 - BOC assigns two targets to same FP
 - FCS recognizes multiple Fire Missions
 - Launcher automatically lays on second target, crew will ARM/FIRE rockets IAW specified method of control

Methods of Control

Initial Fire Mission Processing

- Sufficient Weapons (Rocket availability)
- Field/subfield consistency
- Estimate range to target
- Compute park headings
- Stores time between rounds
- Estimates time of flight

Weapon Malfunctions

D Dud Fuze

M Misfire

P PIM Related Failure

W Weapon Related Malfunction

H HANGFIRE

Hangfire

- HANGFIRE light flashes
- "H" appears in status line
 - Crew ensures cab is safe/sealed
 - Crew waits for 30 minutes
 - Gunner sets ARM switch to safe
 - Gunner Stows LLM
 - Move to unloading site

Safety

Safety

- Responsibilities
- Procedures
- Downrange Masks

Responsibilities

- Range Safety Officer
- Commander
- Officer in Charge (OIC)
- Operations Officer
- Platoon Leader
- Section Chief

Computation of Safety Data

- Safety Computation Methods
 - OPAREA
 - Firing Point
 - Point to Point
- Down Range Masks
- Airspace Coordination

Bias and Precision Errors

Bias errors affect all rockets of a mission and are "occasion to occasion" errors

 Examples: errors in measurement of wind speed or direction, errors in measurement of air density.

<u>Precision errors</u> are caused by variations between rockets and differ for each rocket

 Examples include: Variation in launch weight, variation in rocket motor total impulse.

Down Range Masks

- Masks are terrain features that have enough altitude to potentially affect trajectory of rocket or missile.
- Immediate Mask: 2000 m from firing point.
 - Section Chiefs' responsibility
- Down Range Mask: Greater than 2000 m from firing point.
 - Ops Officer / Plt Ldr's responsibility

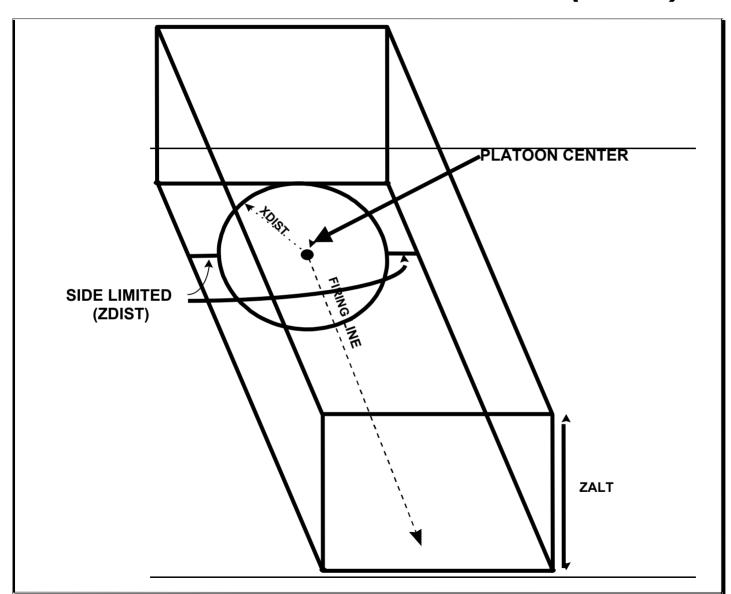
Accounting for Masks

- Immediate Masks:
 - Use M2 compass and enter in FCS.
- Down Range Masks:
 - Use Crest Clearance Tables (App "H")
 - Use automated checks in LCU

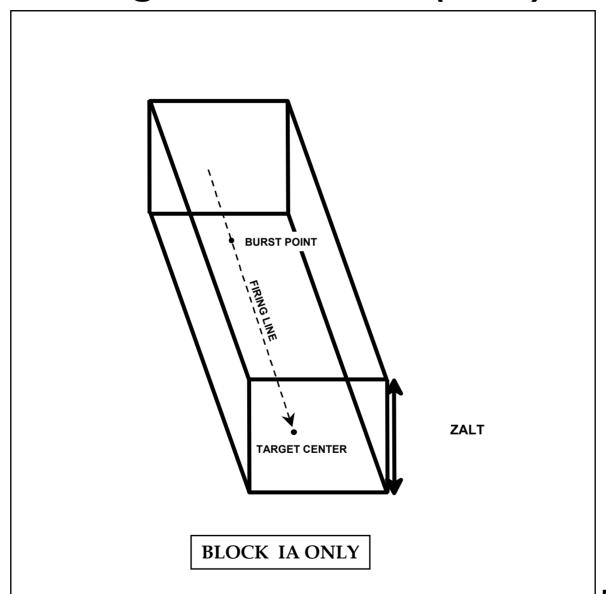
Crest Clearance Tables

- Allows leaders to establish minimum planning range
- Boxes of area that cannot be attacked beyond crest

Automated Down Range Mask


- Entered in the FDS as 3D boxes around terrain feature
- FDS uses input to determine tactical fire direction solution
- Consideration is loss of some area to fire through

Air Space Coordination (Restricted Operating Zone)


- Platoon Air Hazard (PAH)
- Target Air Hazard (TAH)

Another reason why accurate launcher location is important!

Platoon Air Hazard (PAH)

Target Air Hazard (TAH)

ST 6-60-30

Summary

- Targeting Process
- Levels of Intensity
- Launcher Location
- Tactical Response Posture
- Meteorological Requirements
- Fire Mission Processing
- MLRS Safety Procedures

